Tec 21 Research strategy and objectives


Tec 21's research strategy focuses on complex problems that are relevant to important societal issues

Our objective is to create advanced reliable simulation tools for engineers and to develop new technologies based on increased understanding. 

 

Three main work packages are supported:


WP1: Coupling fluid and solid mechanics

Fluid and solid mechanical couplings are known to play a pivotal role in the dynamical response of packed non-saturated materials (sediments, granular materials, geomaterials...) and of their long term evolution (confinement issues, crack propagation, durability of concrete...) They are also essential in dense suspensions (suspended sediments, mud flows, avalanches ...), anisotropic fibrous media (like paper), porous media where rheological behaviour is still poorly understood.

 

They are also essential in dense suspensions (suspended sediments, mud flows, avalanches ...), anisotropic fibrous media (like paper), porous media where rheological behaviour is still poorly understood. Merging tools and concepts developed by solid mechanics with those developed within fluid mechanics will lead to breakthroughs. The main domains of application are related with the management of the environment and territories (including primary resources - such as oil reservoirs, air, water or soils pollution, sediment transport control, CO2 sequestration...), the mitigation of technological and natural hazards (earthquakes, flooding, landslides, avalanches...) using civil engineering (infrastructures, buildings), the transformations of granular and fibrous materials as well as the elaboration of new taylored materials.

Work package leaders: Guillaume Chambon (IRSTEA) & Guillaume Balarac (LEGI)

WP2: Coupling fluid mechanics with bio-physical phenomena at micro scale

In order to incorporate bio-physico-chemical phenomena in continuous mechanics, further developments of simulation in fluid mechanics and transport phenomena is necessary. This implies a better understanding of  turbulence, mixing, multiphase flows with fluid-fluid and/or fluid-solid interfaces including heat and mass transfer (as implied in phase change), as well as complex couplings between flow and phenomena arising at a very small scale and being both physical (e.g., adsorption on interfaces in flotation), chemical (e.g., reactions that arise at the molecular level and micro-mixing issues) or biochemical (e.g., biomass-flow couplings in bioreactor).

 

The above is required in order to be used in industrial processes (including oil, nuclear, chemical, propulsion engineering, food processing industry...) in relation to eco-technologies (recycling and durability issues, cleanup and remediation, water resources...) and clean technologies (intensified industrial processes, from heat exchangers to chemical reactors... as well as new biorefinery processes for vegetal biomass), with important societal issues related to the development of a sustainable and environmentally friendly economy.

 

Work package leaders: Julien Bras (LGP2) & Frédéric Pignon (LRP)

WP3: Engineering for human health

To understand the extraordinary complexity of biological processes, a multidisciplinary and multi-scale approach is required. The combination of mechanical, physical and biological/biomedical approaches should provide solutions to some major public health issues as well as to designing new medical devices and biomaterials.

 

Research is concentrated at different levels/scales: Understanding the mechanics of the cell in relation or reaction to its environment is fundamental for cell adhesion, tumour growth, cell differentiation... Investigating cells interactions and associations is important for tissue morphogenesis and healing or for blood clotting and thrombosis which is at the heart of most cardio-vascular diseases... The project also includes the engineering of new medical materials and devices with improved biocompatibility. Our aim is to increase understanding of fundamental mechanisms of some pathologies (e.g. differential motility of cancerous cells), in the development of new diagnostics, as well as in new surgical techniques and medication practices.

Work package leaders: Claude Verdier (LIPhy) & Thomas Podgorski (LIPhy)